from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris=datasets.load_iris()
x = iris.data
y = iris.target
print ('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print(x)
print('class: 0-Iris-Setosa, 1- Iris-Versicolour, 2- Iris-Virginica')
print(y)
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
#To Training the model and Nearest nighbors K=5
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(x_train, y_train)
#To make predictions on our test data
y_pred=classifier.predict(x_test)
print('Confusion Matrix')
print(confusion_matrix(y_test,y_pred))
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))
0 Comments