from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import classification_report, confusion_matrix

from sklearn import datasets


iris=datasets.load_iris()


x = iris.data

y = iris.target


print ('sepal-length', 'sepal-width', 'petal-length', 'petal-width')

print(x)

print('class: 0-Iris-Setosa, 1- Iris-Versicolour, 2- Iris-Virginica')

print(y)


x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)


#To Training the model and Nearest nighbors K=5

classifier = KNeighborsClassifier(n_neighbors=5)

classifier.fit(x_train, y_train)


#To make predictions on our test data

y_pred=classifier.predict(x_test)


print('Confusion Matrix')

print(confusion_matrix(y_test,y_pred))

print('Accuracy Metrics')

print(classification_report(y_test,y_pred))